21 research outputs found

    Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?

    Full text link
    A new, coercive formulation of the Helmholtz equation was introduced in [Moiola, Spence, SIAM Rev. 2014]. In this paper we investigate hh-version Galerkin discretisations of this formulation, and the iterative solution of the resulting linear systems. We find that the coercive formulation behaves similarly to the standard formulation in terms of the pollution effect (i.e. to maintain accuracy as k→∞k\to\infty, hh must decrease with kk at the same rate as for the standard formulation). We prove kk-explicit bounds on the number of GMRES iterations required to solve the linear system of the new formulation when it is preconditioned with a prescribed symmetric positive-definite matrix. Even though the number of iterations grows with kk, these are the first such rigorous bounds on the number of GMRES iterations for a preconditioned formulation of the Helmholtz equation, where the preconditioner is a symmetric positive-definite matrix.Comment: 27 pages, 7 figure

    Pollution studies for high order isogeometric analysis and finite element for acoustic problems

    No full text
    It is well known that Galerkin finite element methods suffer from pollution error when solving wave problems. To reduce the pollution impact on the solution different approaches were proposed to enrich the finite element method with wave-like functions so that the exact wavenumber is incorporated into the finite element approximation space. Solving wave problems with isogeometric analysis was also investigated in the literature where the superior behaviour of isogeometric analysis due to higher continuity in the underlying basis has been studied. Recently, a plane wave enriched isogeometric analysis was introduced for acoustic problems. However, it remains unquantified the impact of these different approaches on the pollution or how they perform compared to each other. In this work, we show that isogeometric analysis outperforms finite element method in dealing with pollution. We observe similar behaviour when both the methods are enriched with plane waves. Using higher order polynomials with fewer enrichment functions seems to improve the pollution compared to lower order polynomials with more functions. However, the latter still leads to smaller errors using similar number of degrees of freedom. In conclusion, we propose that partition of unity isogeometric analysis can be an efficient tool for wave problems as enrichment eliminates the need for domain re-meshing at higher frequencies and also due to its ability to capture the exact geometry even on coarse meshes as well as its improved pollution behaviour
    corecore